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Acoustics of a two-dimensional compact jet
impinging normally onto a flat plate
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Vortex sound is revisited for two-dimensional compact jets. The interactions between
the flow and the rigid boundaries of the nozzle are included. Jets with steady upstream
conditions and with imposed forcing are considered. A multipole expansion for the
acoustic radiation is derived by the method of matched asymptotic expansion. The
processes are carried out to higher order to obtain the quadrupole impingement sound
in addition to the leading monopole. The emitted sound is found to be related to
the vortical flow motion and the scattering of the incoming forcing from the nozzle
interior. The flow motion is simulated incompressibly using a point vortex model.
The discretization of the continuous vortex shedding is carefully treated to fulfil the
Kutta condition and to eliminate spurious sound radiation. Numerical calculations
are given for both free and forced jets. For small forcing, the leading monopole is
weak and, under some circumstances, the quadrupole sound can be dominant.

1. Introduction
In this paper, sound generation by low-Mach-number impinging jets is revisited.

The aim is to clarify the acoustic sources in the presence of the jet nozzle, especially
the quadrupole of the impingement region and the effect of the interactions between
the flow and the rigid nozzle boundaries.

For a high-speed jet blowing normally onto a flat plate, the impingement region
is the major acoustic source. Periodic oscillations occur when the jet Mach number
is higher than about 0.6, as investigated experimentally by Ho & Nosseir (1981) and
Powell (1988). This is due to an acoustic feedback mechanism. Sutherland & Brown
(1972) measure the acoustics of a slightly obliquely impinging jet (at 10◦ to the plate
normal). They find the key feature of the quadrupole directivity when the self-sustained
oscillations appear: the fundamental and its first harmonic have deep minima at about
48◦ and 50◦ to the normal to the plate. There is only a minor discrepancy from the
theoretical angle of 54.7◦ for the minimum sound due to an axisymmetric quadrupole
near a plane surface, predicted using an image argument by Powell (1991). Measure-
ments of the directivity are more straightforward when the feedback mechanism leads
to self-excited oscillations. Then the discrete tone has a significantly larger magni-
tude and better correlation between the signals at different locations than the other
broadband noise sources. Its directivity pattern can therefore be readily determined.

When the jet speed is lower than the critical Mach number, the highly corre-
lated periodic oscillation no longer exists. The jet motion is then of a turbulent
nature, generating a broadband noise spectrum. However, theoretically, the turbulent
quadrupole also has sound level minima at 45◦ even when the axisymmetric condition
is relaxed, Powell (1991). More sophisticated experimental techniques are required to
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extract this directivity. Shen & Meecham (1993) were able to verify the directivity of
this quadrupole experimentally. They use a cross-correlation technique to analyse the
signals sampled between pressure transducers on the plate and microphones around
the jet. It is believed that this method enables them to filter out much of the sound
other than that produced within the jet impingement region.

The difficulties of analysing the sound of turbulent impinging jets are mainly
associated with the fact that the quadrupoles are inefficient sources of sound. In
laboratories, the sound signals are easily masked by those from other source mecha-
nisms. For example, the characteristic wavelength of sound for a slow jet is inversely
proportional to the jet Mach number. When the Mach number is very small, this
wavelength eventually becomes comparable to the spacing between the nozzle and
the plate in a common experimental setup, such as the one of Shen & Meecham.
Under these circumstances, ignoring the existence of the nozzle and the interactions
between the interior and exterior flow field is questionable.

In an attempt to eliminate nozzle effects, experimentalists, in addition to exploiting
the cross-correlation method discussed above, usually subtract their sound measure-
ments for an impinging jet from those for a free jet from the same nozzle. The
residual noise is defined to be the impingement noise. The sound pressure level of the
impingement noise obeys the eighth-power law, e.g. Olsen, Miles & Dorsch (1972).
This increase of the sound level with jet velocity is qualitatively demonstrated by
Yates (1978). He models the impingement by a stagnation flow and concludes that
the change of momentum provides the extra sources of sound.

However, the quadrupole source of impinging jets has more subtle properties and
has not yet been solved satisfactorily. Howe (1979) considers the acoustic energy
transmitted from the interior of a nozzle through a jet. He finds that, for a low-Mach-
number jet, the radiation pattern is equivalent to a monopole and dipole combination
to leading order. The axis of the dipole is parallel to the jet axis. Since the impinging
jet is equivalent to the resultant of the jet itself and its image, the summation of
the two opposite dipoles degenerates into quadrupoles associated with the jet exit.
Moreover, the role of the additive monopoles is of particular interest and is ignored
in the existing theories of impinging jets. These arguments also suggest that in order
to solve the acoustic field properly, an analysis of high-order accuracy is required.

For simplicity, we investigate a two-dimensional impinging jet at this stage. This
jet is assumed to be symmetric with respect to its axis. The subsonic jet not only
generates sound which is radiated to the far field but also induces acoustic waves in
the duct. Hence, we employ a matched asymptotic process to construct the leading-
order solution. The theoretical derivation of an unforced jet is described in § 2 and a
multipole expansion for the far-field acoustics is obtained. Section 2.7 briefly presents
the extension to a forced jet, driven by acoustic waves propagating down the jet
pipe. The multipole expansion of the acoustic far field shows that the sound source
mechanism is divided into two major categories: the vortex sound of the shear layer
motion and the scattering of any incoming sound propagating down the duct. Forcing
also influences the shed vorticity through the Kutta condition at the nozzle exit and
so modifies the vortex sound. The expansion is compared to Crow’s (1970) and
Möhring’s (1978, 1979) theory of vortex sound.

We demonstrate theoretically how the vortex sound component can be expressed
in terms of the motion of the shear layer. Various ways to describe the shear layer
motion are available. We use a point vortex model to simulate the shear layer. A
fourth-order integrator is applied to update the position of the vortices to the accuracy
required for the vortex sound calculation. Application of the discrete vortex method
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as sources of sound has been investigated by Knio, Collorec & Juve (1995) where the
sound level from clusters of point vortices over a flat slippery boundary is calculated.
This model enables us to describe not only the growth of the instabilities but also
the nonlinear interactions, such as vortex pairing, in the impingement region. The
numerical scheme is described in § 3.1.

In the calculation, the time step is set to a small finite value and, at each time step,
a new vortex element is shed near the nozzle lip to fulfil the Kutta condition. During
the shedding process, the new vortex is connected to the nozzle lip by a ‘feeding
sheet’ which continuously feeds in vorticity. Peters & Hirschberg (1993) study the
effect of the vortex shedding induced by an incident plane wave from the interior
of a pipe. They note that there is, in general, a spurious dipole sound radiation due
to the discretization. This dipole radiation is eliminated by correctly including the
counterpart contribution from its image (Howe 1996). The amended shedding process
is referred to as a ‘sound-free Kutta condition’. We use it to model the continuous
shedding of vorticity at the duct exit, as described in § 3.2. Numerical verifications
of the hydraulic field are discussed in § 4.1. Finally, the simulated hydraulic flow is
used in the acoustic analogy in § 4.2 and § 4.3 to determine the far-field sound. Two
examples for both forced and unforced jets are given.

2. Far-field sound of compact impinging jets
Assuming that the flow is isentropic, we rewrite the equation of motion in the

form of the exact acoustic analogy of Howe (1975), which uses stagnation enthalpy
B =

∫
dp/ρ+ u2/2 as the dependent variable:(

D∗

Dt∗

(
1

c∗2
D∗

Dt∗

)
− ∇∗2

)
B∗ = ∇∗ · (ω∗ × u∗)− 1

c∗2
D∗u∗

Dt∗
· ∂
∗u∗

∂t∗
, (2.1)

where we invoke the identity

∇∗B∗ = −∂∗u∗/∂t∗ − ω∗ × u∗. (2.2)

The superscript ∗ denotes dimensional physical quantities, and u and ω are the flow
velocity and vorticity.

The flow is divided into three regions, as sketched in figure 1. The inner region,
Region I, is the hydraulic region where the flow is primarily incompressible. A variety
of standard techniques can be used to evaluate the incompressible vortical flow. As
an illustrative example, in § 3.1, we apply a point vortex model to simulate the flow
motion. The jet exit velocity Ue and pipe width D are the characteristic velocity and
length scale of the region. The non-dimensional inner variables are therefore

B̃i(t, x) = B∗(t, x)/U2
e , u = u∗/Ue, ω = ω∗D/Ue, xi = x∗/D, t = t∗Ue/D.

Equation (2.1) is non-dimensionalized to be(
M2 D2

Dt2
− ∇2

i

)
B̃i(t, x) = ∇i · (ω × u) +M2 Du

Dt
· ∂u
∂t
, (2.3)

where M is exit Mach number of the jet and is small throughout the analysis. After
the normalization, the jet is driven by a steady uniform flow with unit velocity from
infinity within the duct.

We also assume that the motion of the shear layer is the only acoustic source
which generates sound waves. These waves both propagate through the outer wave
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Figure 1. Schematic diagram of the flow regions: Region I, the inner region; Region II, the outer
wave region and Region III, the duct wave region. The characteristic length scale is D for the inner
region and D/M for the outer and duct regions. Mach number M is small.

region, Region II, and penetrate into the duct, Region III. For these propagating
sound waves, we re-scale the outer wave variables to be

B̃o(t, x) = B∗(t, x)/U2
e , xo = Mx∗/D,

and the duct variables

B̃D(t, x) = B∗(t, x)/U2
e , xD = Mx∗/D.

Both regions have the same time scale as that of region I. Normalization of (2.1)
using these non-dimensional variables gives the wave equation for the outer region(

∂2

∂t2
− ∇2

o

)
B̃o(t, x) = 0, (2.4)

and the convective wave equation in the duct((
∂

∂t
−M ∂

∂xD

)2

− ∂2

∂x2
D

)
B̃D(t, x) = 0. (2.5)

The method of matched asymptotic expansions is applied to match the solutions over
the three regions.

The matching procedure is performed on the frequency domain. Taking Fourier
transformation of (2.3), (2.4) and (2.5), one obtains

∇2
i Bi(Ω, x) = −F

{
∇i · (ω × u) +M2 Du

Dt
· ∂u
∂t
−M2 D2

Dt2
B̃i

}
, (2.6)

for the inner region and

(∇2
o + Ω2)Bo(Ω, x) = 0,

((
M

∂

∂xD
+ iΩ

)2

− ∂2

∂x2
D

)
BD(Ω, x) = 0, (2.7)

for the outer wave region and the duct wave respectively. The operator F{} denotes
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the transformation

B(Ω) =F{B̃(t)} =

∫
B̃(t) exp (iΩt)dt,

where now the tilde marks the function B defined in the time domain. Velocity u and
vorticity ω remain functions of time.

To start the process, we try the first inner expansion

Bi(Ω, x) = B
(0)
i (Ω, x) + h.o.t.,

where h.o.t. stands for higher-order terms. Substituting into (2.6), we obtain the
governing equation for B(0)

i

∇2
i B

(0)
i (Ω, x) = −F{∇i · (ω × u)}.

The solution after integration by parts once is

B
(0)
i (Ω, x) =F

{∫
(ω × u) · ∇iG(xi, yi) dVy

}
, (2.8)

where G(xi, yi) is the Green function.
Solution (2.8) can be re-cast to a simpler form by applying Möhring’s transforma-

tion Möhring (1978, 1979). For the two dimensional geometry, we can easily find a
conjugate vector Green function G(xi, yi), satisfying ∇iG(xi, yi) = ∇i × G(xi, yi). With
this definition G(xi, yi) is undefined to within the addition of an arbitrary ∇f(xi, yi).
Substitution into (2.8) yields

B
(0)
i =F

{∫
(ω × u) · ∇i × G(xi, yi) dVy

}
Integrating the right-hand side by parts, we have

B
(0)
i =F

{∫
G(xi, yi) · ∇i × (ω × u) dVy

}
.

Recalling the Helmholtz equation ∂ω/∂t = −∇i × (ω × u) for inviscid and incom-
pressible flow, the above expression becomes

B
(0)
i (Ω, x) = −F

{
∂

∂t

∫
ω · G(xi, yi) dVy

}
. (2.9)

This procedure enables us to transform the quadratic form of vorticity and velocity,
(2.8), into the time derivative of the linear superposition of vorticity and a vector
Green function in the vortical flow region.

2.1. The Green function and the far-field approximation of the hydraulic field

Symmetrical perturbations are particularly observed to be the main source of the
radiated sound (Powell 1988 and Neuwerth 1974), when a self-sustained feedback
loop is established for high-speed impinging jets. From the intrinsic properties of free
jets, Tam & Ahuja (1990) and Tam & Norum (1992) argued that the fundamental
symmetric mode has a lower frequency band and is excited first as the jet velocity
is raised to a critical Mach number. Therefore, we investigate a symmetric inner jet
flow field for simplicity.

Under this simplification, Region I is reduced to a physical domain as shown
in figure 2(a). The thin pipe wall is represented by the branch cut extending from
ze, the position of the exit, to infinity. A Schwartz–Christoffel transformation is
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Figure 2. (a) The physical domain. (b) The conformal transformation domain. zx = x1 + ix2,
zy = y1 + iy2 and ζx, ζy are the corresponding positions of zx and zy on the transformed plane.

applied to project the physical flow region z into the upper half-plane of the complex
transformed variable ζ with the boundaries along the real axis, as shown in figure
2(b). The transformation (Kober 1952) is

πz = a
√
ζ + 1 + 1/a+ tanh−1

√
ζ + 1 + 1/a, (2.10)

where the width of the pipe has been normalized to unity and a is a real function
of L, the distance from the pipe exit to the plate. This transformation maps the exit
z = ze to the point ζ = 0, and the stagnation point of the impingement, z = 0, to
ζ = −1− 1/a. It is possible to remove the constraint of the symmetric impinging jet
by employing a more sophisticated transformation and some extra algebraic details.
One such transformation can also be found in Kober (1952). But no new physics is
introduced by doing so.

The Green function G(xi, yi) satisfies ∇2
iyG = δ(yi − xi) and its normal derivatives

vanish on axes and on the branch cut. Applying the conformal transformation, (2.10),
G can be expressed as

G(xi, yi) =
1

2π
Re {log (ζy − ζx) + log (ζy − ζ∗x)}. (2.11)

The ζx and ζy represent the corresponding positions of x and y on the transformed
plane and the superscript ∗ denotes the complex conjugate. A suitable vector Green
function, hence, can be written as

G(xi, yi) =
e3

2π
Im {log (ζy − ζx) + log (ζy − ζ∗x)},

where e3 is the unit vector in the 3-direction.
The far-field approximation of (2.9) is found by letting ζx →∞ in the vector Green

function and the transformation (2.10), which leads to

B
(0)
i =

a2

π3

cos (2θ)

r2
i

F
{
∂

∂t

∫
ωIm {ζy} dVy

}
= − iΩ cos (2θ)

r2
i

Q(Ω), (2.12)

where ri = (x2
i1 + x2

i2)
1/2 in terms of inner variables and

Q(Ω) =F{Q̃(t)} =F
{
a2

π3

∫
ωIm {ζy} dVy

}
. (2.13)

Similarly we can find the approximation at the far end of the duct by letting
ζx → −1/a, which gives

B
(0)
i = −1

π
F
{
∂

∂t

∫
ωIm

{
log

(
ζy +

1

a

)}
dVy

}
=

iΩ

π
P(Ω), (2.14)
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and

P(Ω) =F{P̃(t)} =F
{∫

ωIm

{
log

(
ζy +

1

a

)}
dVy

}
. (2.15)

Equation (2.14) describes the ‘back-reaction’ within the duct of the exterior jet flow
produced by the shear flow fluctuations. The independence of the upstream location
expresses that, in the absence of compressibility, the shear layer source is incapable
of inducing a net flux within the duct.

When the constraint of symmetry is removed, one can derive similar expressions
to (2.12) and (2.14) for both the far-field and the duct approximation provided
functions P(Ω) and Q(Ω) include the contributions from vortex elements in the
region Im (z) < 0.

2.2. First-order matching with the duct wave

The unsteadiness of the back-reaction induces sound waves. For simplicity, we assume
that the duct is infinitely long so that there are no reflected acoustic waves. Therefore,
the waves generated by the reactions are solely upstream propagating. Equation (2.14)
suggests that the first expansion of the duct wave is

BD = bD exp

(
iΩxD

1−M
)

+ h.o.t.

The approximation when xD is small is

BD ' bD(1 + iΩxD) = bD + iΩMxi, (2.16)

in terms of inner duct variable xi, where we have xD = Mxi.
Equation (2.16) can be matched with (2.14) giving

bD =
iΩ

π
P(Ω). (2.17)

The expansion of (2.16) also suggests that the next order of the inner expansion is
of magnitude O(M). Moreover, as we see later, the outer wave equation (2.7) has its
eigensolution expressed in terms of a Hankel function of zeroth order. Its logarithmic
singularity is likely to introduce an additional term of O(M logM). Therefore, we
assume the inner expansion is

Bi = B
(0)
i +MB

(11)
i +M logMB

(12)
i + h.o.t. (2.18)

On substituting into the governing equation of the inner region (2.6) we have equations
B

(11)
i and B(12)

i , which are

∇2
i B

(11)
i = 0, ∇2

i B
(12)
i = 0.

Their solution can be written down in the straightforward form

B
(11)
i =

b
(11,1)
i

2π
Re

{
log

(
ζx +

1

a

)}
+ b

(11,2)
i , (2.19)

and

B
(12)
i =

b
(12,1)
i

2π
Re

{
log

(
ζx +

1

a

)}
+ b

(12,2)
i , (2.20)

where the constants b(11,1)
i , b(11,2)

i , b(12,1)
i and b(12,2)

i are to be determined later.
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Re-expressing the inner expansion (2.18) together with (2.19) and (2.20) the duct
variable, we have

Bi '
{

iΩ

π
P(Ω)− b

(11,1)
i

2
xD

}
+M

{
b

(11,1)
i

2π
(a+ log 2) + b

(11,2)
i

}

+M logM

{
b

(12,1)
i

2π

(
a+ log 2− πxD

M

)
+ b

(12,2)
i

}
. (2.21)

Comparison with (2.16) leads to

b
(11,1)
i = −2iΩbD =

2Ω2

π
P(Ω), (2.22)

and

b
(12,1)
i = 0. (2.23)

The lowest-order wave motion in the duct is order unity. This expansion also gives the
next order of the duct wave expansion which, at least, contains O(M) and O(M logM).
The matching process for these higher-order terms is postponed until we finish the
first-order matching with the wave region.

2.3. First-order matching with the wave region

To match with the wave region, we expand the far-field approximation of Bi in
(2.18)–(2.20) in terms of outer variables,

Bi ' −M2 iΩ

r2
o

cos (2θ)Q(Ω) +M

{
1

π
b

(11,1)
i

(
log

π

a
+ log ro

)
+ b

(11,2)
i

}

+M logM

(
b

(12,2)
i − b

(11,1)
i

π

)
+ O(M3, etc.), (2.24)

Hence, we can express the solution of (2.7) for the outer wave region by means of the
multipole expansion

Bo = M b(1)
o H(1)

0 (Ωro) +M logM b(12)
o H(1)

0 (Ωro) +M2{b(21,1)
o H(1)

0 (Ωro)

+b(21,2)
o H(1)

2 (Ωro) cos (2θ)}+M2 logM b(22)
o H(1)

0 (Ωro), (2.25)

where H(1)
0 (Ωro) and H(1)

2 (Ωro) are Hankel functions of order 0 and 2 of the first kind
to satisfy the outgoing wave condition. The monopole term of O(M2) in (2.25) has
to be retained because the higher-order expansion of the inner field usually results
in it having non-zero strength which is comparable with the quadrupole in the wave
region (Crighton, et al. 1992; Obermeier 1985). The term of O(M2 logM) also arises
from the logarithmic singularity in the near field.
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The near-field expansion of (2.25) is

Bo 'M b(1)
o

(
A+

2i

π
log ro

)
+M logM b(12)

o

(
A+

2i

π
log ro

)

+M2

{
b(21,1)
o

(
A+

2i

π
log ro

)
− 4i

π(Ωro)2
b(21,2)
o cos (2θ)

}

+M2 logM b(22)
o

(
A+

2i

π
log ro

)
, (2.26)

where A = 1 + (2i/π)(logΩ/2 + γE), for short, and γE ' 0.57 is the Euler constant.
Matching (2.24) and (2.26) gives

b(1)
o = − i

2
b

(11,1)
i , b(12)

o = 0, b(21,2)
o =

πΩ3

4
Q(Ω),

b
(11,2)
i =Ab(1)

o − b
(11,1)
i

π
log

π

a
, b

(12,2)
i =

1

π
b

(11,1)
i .

 (2.27)

The constants b(21,1)
o and b(22)

o are not yet determined. Their values are derived from
matching with the higher orders of the inner expansion and the duct wave.

The matching at this order shows that the interaction of the jet shear layer and
the nozzle introduces a leading monopole of order M, as shown in Howe (1979). The
quadrupole term is also revealed. It has a directivity cos (2θ) which is imposed by
the rigid boundary condition on the plate and the duct wall. The directivity pattern
describes a minimum pressure at θ = 45◦ in the first quadrant of the z-plane. This
term, subjected to the geometric modification, corresponds to the quadrupole source
of vortex sound in Crow (1970) and Möhring (1979) in an unbounded flow field.

2.4. Second-order matching with the duct field

Rewriting (2.26) in terms of inner variables, we have

Bo ' − 4i

π(Ωri)2
b(21,2)
o cos (2θ) +M b(1)

o

(
A+

2i

π
log ri

)
+M logM

2i

π
b(1)
o

+M2 b(21,1)
o

(
A+

2i

π
log ri

)
+M2 logM

{
2i

π
b(21,1)
o + b(22)

o

(
A+

2i

π
log ri

)}

+M2 log2 M
2i

π
b(22)
o . (2.28)

This suggests that the second-order expansion of the inner field is

Bi = B
(0)
i +MB

(11)
i +M logMB

(12)
i

+M2B
(21)
i +M2 logMB

(22)
i +M2 log2 MB

(23)
i + h.o.t. (2.29)

Substituting (2.29) back into (2.6), we obtain the governing equations for each order

∇2
i B

(21)
i =F

{
D2

Dt2
B̃

(0)
i − Du

Dt
· ∂u
∂t

}
,

and

∇2
i B

(22)
i = 0, ∇2

i B
(23)
i = 0.
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Their solutions are

B
(21)
i =F

{∫ (
D2

Dt2
B̃

(0)
i − Du

Dt
· ∂u
∂t

)
G(x, y) dVy

}

+
1

2π
b

(21,1)
i Re

{
log

(
ζx +

1

a

)}
+ b

(21,2)
i , (2.30)

with the aid of the Green function (2.11), and

B
(22)
i =

b
(22,1)
i

2π
Re

{
log

(
ζx +

1

a

)}
+ b

(22,2)
i ,

B
(23)
i =

b
(23,1)
i

2π
Re

{
log

(
ζx +

1

a

)}
+ b

(23,2)
i ,

 (2.31)

respectively.
In the duct region, the expansion of Bi (2.29), in terms of the duct variable, is

Bi '
(

iΩ

π
P(Ω)− 1

2
b

(11,1)
i xD

)
+M

{
1

2π
b

(11,1)
i (a+ log 2) + b

(11,2)
i − 1

2
b

(21,1)
i xD

}
+M logM

{
b

(12,2)
i − 1

2
b

(22,1)
i xD

}
−M log2 M 1

2
b

(23,1)
i xD + O(M2 logM, etc.).

(2.32)

This expansion gives the next order of the duct wave as

BD = bD exp (iΩxD) +MB
(11)
D +M logMB

(12)
D +M log2 MB

(13)
D + h.o.t. (2.33)

After substitution into the duct wave equation (2.7), we have the solutions

B
(11)
D = b

(11)
D exp

(
iΩxD

1−M
)
, (2.34)

and

B
(12)
D = b

(12)
D exp

(
iΩxD

1−M
)
, B

(13)
D = b

(13)
D exp

(
iΩxD

1−M
)
. (2.35)

The inner expansion of the duct wave, (2.33), bringing in (2.34) and (2.35), in terms
of the duct variable then becomes

BD = bD(1 + iΩxD) +M{iΩ(bD + b
(11)
D )xD + b

(11)
D }

+M logM b
(12)
D (1 + iΩxD) +M log2 M b

(13)
D (1 + iΩxD).

Matching the above equation with (2.32) gives

b
(11)
D =

1

2π
b

(11,1)
i (a+ log 2) + b

(11,2)
i , b

(12)
D = b

(12,2)
i ,

b
(13)
D = b

(23,1)
i = 0, b

(22,1)
i = −2iΩb(12)

D ,

b
(21,1)
i = −2iΩ(bD + b

(11)
D ).

 (2.36)

Information from the inner field also influences terms of orders M2 and M2 logM,
etc. in the duct wave via (2.32). But we do not need to consider these higher-order
terms. Finally, second-order matching with the wave region determines the rest of the
unknown coefficients.
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2.5. Second-order matching with the wave region

Incorporating the solutions for each magnitude order, such as (2.30) and (2.31), the
far-field approximation of Bi in terms of inner variables is

Bi ' − iΩ

r2
i

Q(Ω) cos (2θ) +M

(
1

π
b

(11,1)
i

(
log

π

a
+ log ri

)
+ b

(11,2)
i

)

+M logM b
(12,2)
i +M2

{
1

π
(2R(Ω) + b

(21,1)
i )

(
log

π

a
+ log ri

)
+ b

(21,2)
i

}

+M2 logM

{
1

π
b

(22,1)
i

(
log

π

a
+ log ri

)
+ b

(22,2)
i

}
+M2 log2 M b

(23,2)
i . (2.37)

The function

R(Ω) =F
{∫ (

D2

Dt2
B

(0)
i − Du

Dt
· ∂u
∂t

)
dVy

}
. (2.38)

is a term which results from the solution of (2.30) and represents compressibility
effects from the first-order inner field. The evaluation of this function is described in
Appendix A, §A.2 which gives R(Ω) = −Ω2P(Ω)/π for inviscid flow.

Matching (2.37) and (2.28), we obtain the coefficients

b(21,1)
o = − i

2
(2R(Ω) + b

(21,1)
i ), b(22)

o = − i

2
b

(22,1)
i ,

b
(21,2)
i =Ab(21,1)

o − 1

π
(2R(Ω) + b

(21,1)
i ) log

π

a
,

b
(22,2)
i =

2i

π
b(21,1)
o +Ab(22)

o − 1

π
b

(22,1)
i log

π

a
,

b
(23,2)
i =

2i

π
b(22)
o .


(2.39)

This completes the matching process and gives the far field to order M2. The
coefficients are tabulated in (2.17), (2.23), (2.27), (2.36) and (2.39) for all the three
regions and they are explicit functions of the incompressible vortical flow motion
through P(Ω), Q(Ω), the frequency Ω and known constants.

2.6. The sound waves in the outer wave region

We are particularly interested in the outer wave region. From the matched asymptotic
expansion, we obtain the acoustic field expressed by the multipole expression

Bo ' −M iΩ2

π
P(Ω)H(1)

0 (Ωro) +M2

{
πΩ3

4
Q(Ω)H(1)

2 (Ωro) + b(21,1)
o H(1)

0 (Ωro)

}

−M2 logM
2Ω3

π2
P(Ω)H(1)

0 (Ωro). (2.40)

P(Ω) and Q(Ω) are functions of the incompressible vortical flow motion defined by
(2.15) and (2.13):

P(Ω) =F
{∫

ωIm

{
log

(
ζy +

1

a

)}
dVy

}
,
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and

Q(Ω) =F
{
a2

π3

∫
ωIm {ζy} dVy

}
.

P(Ω) is the integral of the product of the vorticity and the stream function of a
hypothetical potential flow with a source at infinity in the duct. Its time derivative
(2.14) is proportional to the hydraulic fluctuations at infinity in the duct induced by
the exterior flow motion. Q(Ω) has a similar form to P(Ω) in which the hypothetical
streamline is replaced by that of an irrotational uniform incoming flow as y2 →∞.

The coefficient b(21,1)
o is found from (2.39) and relevant equations

b(21,1)
o = −iR(Ω)− iΩ2

π
P(Ω)

(
1− iΩ

π
(B− iπ+ 2 logΩ)

)
, (2.41)

where B = a−log 2−2 log(π/a)+2γE is the constant that arises from the eigensolution
of the wave region and the geometry detail.

It is, sometimes, more convenient to convert (2.40) back into the time domain when
using a numerical calculation for the incompressible vortical flow in Region I. The
algebraic detail is straightforward and is relegated to Appendix A. The equivalent
expression in the time domain assuming the observer is far away from the source
region is eventually found to be

B̃o(t, xo) 'MB̃(1)
o (t, xo) +M2 logMB̃(22)

o (t, xo)

+M2{B̃(21,1)
o (t, xo) + B̃(21,2)

o (t, xo) cos (2θ)}, (2.42)

where the monopoles B̃(1)
o (t, xo), B̃

(22)
o (t, xo) and B̃(21,1)

o (t, xo) are defined in (A 3), (A 4)

and (A 14), respectively. B̃(21,2)
o (t, xo) is the module of the quadrupole given by (A 16).

The leading-order term found in (2.42), MB̃(1)
o (t, xo), is the response of the flow

interaction with the exit of the duct. As expected, the quadrupole is of second order,
and is accompanied by an induced monopole of the same order, often referred to as
an ‘isotropic quadrupole’, and due to compressibility effects on the hydraulic motion

in the inner field. B̃(22)
o (t, xo) arises from the two-dimensional configuration of the flow

field and explicitly from the logarithmic singularity of the Hankel function during
the matching process. This expression also shows that when there is no forcing, the
sound is generated due to the shear layer motion. The unsteadiness is introduced by
the instability mechanism and the nonlinear interactions with the impingement.

2.7. Forced jet

It is also of interest to solve for the far-field acoustics subject to prescribed incident
sound waves from infinity in the duct. To cope with the forcing, we replace the duct
wave expansion by

BD ' BI
(

exp

(−iΩxD
1 +M

)
+ R exp

(
iΩxD

1−M
))

+Mb
(11)
D exp

(
iΩxD

1−M
)

+M logMb
(12)
D exp

(
iΩxD

1−M
)

+M log2 Mb
(13)
D exp

(
iΩxD

1−M
)
, (2.43)

where BI is the magnitude of the incident wave and is, in general, a function of
frequency Ω. R is the reflection coefficient for the leading order. We here use the
expansion of multiple scales for convenience and assume that the higher-order terms
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only contain waves induced by the exterior flow motion and propagating upstream
within the duct.

Both the outer wave region and the inner field have the same expansion as (2.25)
and (2.29). We apply similar matching procedures as in the last section which leads
to the reflection coefficient

R =
iΩ

πBI
P(Ω)− 1, (2.44)

and

b
(11,1)
i = −2iΩBI (R − 1) =

2Ω2

π
P(Ω) + 4iΩBI. (2.45)

The rest of the coefficients have the same dependence as expressed in (2.23), (2.27),
(2.36) and (2.39). Through these expressions, the second term due to BI in (2.45)
causes responses at each order.

We can also obtain an equivalent expression in the time domain by using a similar
inversion process to that described in the Appendix,

B̃oF (t, xo) = B̃o(t, xo) +M

{
4

π

∂

∂t
B̂I(t)

}
+M2 logM

{
8

π2

∂2

∂t2
B̂I(t)

}

+M2 4

π2

∂2

∂t2

{
BB̂I(t) +

√
2

ro
ĤI (t)

}
, (2.46)

where B̃o(t, xo) is found in (2.42) and

B̂I(t) =

∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2B̃I(τ),

ĤI (t) =

∫ t−ro

−∞
dτ

(ψ(1/2)− log(t− τ− ro))
(t− τ− ro)1/2

B̃I(τ).

The B̃I(τ) are the prescribed incident waves at the duct exit such that B̃I(τ) =F−1{BI
(Ω)}.

Equation (2.46) decomposes the acoustic source into two categories. One is the

hydrodynamic motion of the jet expressed as B̃o. As we saw in § 2.1, this is the only
sound source when the jet is unforced. The remaining terms are the direct scattering
pattern from the incident waves through the duct exit region. Moreover, the forcing
also affects the shed vorticity through the Kutta condition and, therefore, the resultant
motion of the jet.

3. The model of the inner flow field
3.1. The point vortex method

We consider a two-dimensional subsonic jet which emerges from a straight pipe with
a sharp exit and impinges normally onto a flat plate as sketched in figure 1. The flow
is inviscid. Motion of the shear layer is described by the evolution of an array of
point vortices. The velocity of an individual vortex in the system is mainly influenced
by vortices in its vicinity as given by the Biot–Savart law. Compressibility effects
which result in small modifications to the vortex element speed are neglected.

The vortical flow is simplified to a physical domain as shown in figure 3(a). Normal
velocity vanishes on the axes and on the branch cut. The same Schwartz–Christoffel
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Figure 3. (a) The physical domain. (b) The conformal transformation domain.

transformation, (2.10), is again applied to project the physical flow region z into the
upper half-plane of the complex transformed variable ζ with the boundaries along the
real axis, as shown in figure 3(b). The jet is driven by a point source at ζ = −1/a with
normalized unit volume flux at infinity in the duct. We can also simulate forced jets
by adding small prescribed harmonic velocity perturbations onto the mean velocity at
the source. A vortex is shed from the pipe exit at each calculation time step to satisfy
the Kutta condition (see § 3.2). The point vortex is then convected with constant
circulation after being introduced into the flow region. At any instant, we can find a
complex potential in both the physical and transformed domains

Ψ (z) = Φ(ζ) =
1

2π
log

(
ζ +

1

a

)
+
∑
i

Γi

2πi
log

ζ − ζi
ζ − ζ∗i (3.1)

where Γi and ζi denote the circulation strength and the instantaneous position of the
existing point vortices in the flow field. Superscript ∗ denotes the complex conjugate.
The image system of vortices is included to fulfil the boundary condition of zero
normal velocity on the real axis of the computational domain.

The complex potential (3.1) gives the velocity at z,

u∗(z) =
dΨ (z)

dz
=

dΦ(ζ)

dζ

dζ

dz
. (3.2)

The velocity of a vortex is, however, given by the local velocity induced by the rest
of the vortices and the source, which is

u∗(zi) = lim
z→zi

d

dz

(
Ψ (z)− Γi

2πi
log(z − zi)

)
.

This can be rewritten as

u∗(zi) = lim
z→zi

d

dz

(
Φζi(ζ) +

Γi

2πi
log(ζ − ζi)− Γi

2πi
log(z − zi)

)
,

where the Φζi(ζ) are the complex potentials excluding the contribution from the
vortex of strength Γi at ζi corresponding to the physical position zi. Applying the
approximation

ζ = ζi + (z − zi)dζ

dz

∣∣∣
zi

+ 1
2
(z − zi)2 d2ζ

dz2

∣∣∣
zi

+ O((z − zi)3),

we obtain

u∗(zi) = Φ′ζi(ζ)
∣∣∣
ζi

dζ

dz

∣∣∣
zi

+
Γi

4πi

d2ζ/dz2

dζ/dz

∣∣∣
zi

(3.3)



Acoustics of a compact impinging jet 265

Ci

Cn

Feeding sheet

f (y,t )
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Figure 4. The imaginary vortical flow at an intermediate time step. Γn is the time-dependent
circulation of the new vortex, Γi the constant circulation of the existing vortices and f(y, t) is the
induced body force by Γn.

where Φ′ζi(ζ) is the derivative of Φζi(ζ) with respect to ζ. The second term on the
right-hand side of (3.3) results from the transformation and is called the ‘Routh’s
correction’.

Consequently, the convection velocity of the vortices in the computational plane is

dζi
dt

=
dζ

dz

∣∣∣
zi

dzi
dt

= u(zi)
dζ

dz

∣∣∣
zi

, (3.4)

where u(zi) is given by (3.3). The derivatives dζ/dz and d2ζ/dz2 can be found from
(2.10). Numerical calculations are carried out on the computational domain to solve
(3.4) using a fourth-order Runge–Kutta algorithm, for example see Hildebrand (1956).

3.2. Sound-free vortex shedding

Flow separation occurs at the duct exit. For inviscid flow, vorticity is shed to ensure
that the velocity at the exit is finite. This is commonly referred to as the Kutta
condition. In point vortex calculations, a new vortex is shed at each time step. At
beginning of a time step, a new vortex is specified at the position of the pipe exit.
While we use the Runge–Kutta scheme to calculate the position of the other vortices
at the intermediate steps, the new vortex is connected to the exit point by a ‘feeding
sheet’ which allows vorticity to be continuously fed into the vortex during the time
step, as sketched in figure 4. Following Howe (1996), the circulation of the feeding
sheet is assumed to be negligible compared to that of the vortex.

The Kutta condition determines the circulation of the new vortex as a function
of its position, but more detailed fluid dynamic analysis is required to determine the
position of the vortex. The widely used Brown & Michael (1954) equation is derived
by requiring that the shedding process does not generate forces on the flow field.
Disselhorst & van Wijngaarden (1980) locate the new vortex at the centre of gravity
of a small continuous sheet vortex segment shed during a time step. Comparison of
various methods is made by Peters (1993). He finds that dipole sound radiation usually
accompanies the discretized shedding process. This is because when the circulation of
the new vortex is time dependent, it induces forces on both the feeding sheet and on
the new vortex, as denoted by f(y, t) in figure 4, and generates the spurious dipole
sound (see § 2.3 in Peters & Hirschberg 1993). Howe (1996) points out that this is due
to an unbalanced surface force and derives an amended equation of motion for the
new vortex by correctly including the surface contribution. In this section, we describe
the incorporation of this shedding mechanism to eliminate the spurious sound from
the discretization.

The Kutta condition states that the velocity (3.2) at the separation point is finite.
Since the transformation dζ/dz is singular at the exit, the circulation of the vortex
must satisfy

lim
ζ→0

d

dζ

(
Φ(ζ) +

Γn

2πi
log

ζ − ζn
ζ − ζ∗n

)
= 0,
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where ζn is the position of the new vortex and Φ(ζ) is the potential at ζ due to the
existing vortices. This gives the circulation as a function of ζn

Γn =
2πiζnζ

∗
n

ζ∗n − ζn Φ
′(0). (3.5)

Because the circulation strength of the new vortex is time dependent, an unsteady
force f(y, t) is induced and acts on the vortex and the feeding sheet. This additional
force arises solely due to the attempt to discretize the process of continuous vortex
shedding. To ensure that it does not generate sound, Howe (1996) shows that the
equation of motion for the new vortex should be

dyn
dt
· ∇Θj +

Θj

Γn

dΓn
dt

= u(yn) · ∇Θj (j = 1, 2), (3.6)

which is given in the Cartesian coordinates. Θj(y) is a hypothetical stream function
which is zero on the boundaries and leads to a unit uniform speed in the j-direction
as |y| → ∞. yn and Γn denote the position and time-dependent circulation of the
new vortex and u(yn) is the velocity induced at yn by the rest of the vortices. A
straightforward verification that the condition in (3.6) leads to silent vortex shedding
is given in Kuo (1998).

The vortex shedding occurs near the pipe exit in this model; therefore, Θj is
approximated by the stream functions of vortices near a semi-infinite plane extending
from ze to infinity parallel to the y1-axis. For the case j = 1, the stream function with
unit velocity in the y1-direction is Θ1 = Im {z − ze} and (3.6) provides the velocity
component dyn/dt normal to the half-plane. For j = 2, Θ2 is defined by the limiting
value as b → ∞ of the stream function for a plate extending from ze to ze + 2b,
namely,

Θ2 = lim
b→∞ Im {−i((z − ze)(z − ze − 2b))1/2} ' Im {√2b(z − ze)1/2}.

The length 2b does not appear in the equation of motion because (3.6) is homogeneous
in Θj . Straightforward algebra combines the two cases into a single equation in
complex-variable notation:

dzn
dt

+
(zn − ze)− |zn − ze|

Γn

dΓn
dt

= u(zn), (3.7)

where z = y1 + iy2 and u(zn) is the induced velocity, (3.3), on the z-plane. This is the
equation of motion for the new vortex. It shows that the vortex velocity is equal to
the induced velocity only when the circulation Γn is constant.

Equation (3.7) can be re-expressed in terms of the transformed variable

2ζn
dζn
dt

+ (ζ2
n − |ζn|2) 1

Γn

dΓn
dt

=
4π

Da2
(1 + 1/a)1/2u(zn), (3.8)

where we have assumed that the position of the new vortex is close to the exit ze and
applied the approximate form of (2.10)

ζ2
n =

4π

Da2
(1 + 1/a)1/2(zn − ze).

Differentiating the circulation (3.5) with respect to time, we have

1

Γn

dΓn
dt

=
1

ζ∗n − ζn
(
ζ∗n
ζn

dζn
dt
− ζn

ζ∗n

dζ∗n
dt

)
+

1

Φ′(0)

dΦ′(0)

dt
.
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Substituting the above expression into (3.8), we find a more convenient form for the
velocity of the new vortex on the computational plane

2ζn
dζn
dt
− ζn

(
ζ∗n
ζn

dζn
dt
− ζn

ζ∗n

dζ∗n
dt

)
= U(ζn; ζj), (3.9)

where

U(ζn; ζj) =
4π

Da2
(1 + 1/a)1/2u(zn)− ζ2

n − |ζn|2
Φ′(0)

dΦ′(0)

dt
.

Equations (3.5) and (3.9) can be used to determine the evolution of the new vortex
through its first time step.

We note that Φ′(0) is zero at the beginning of the time step because the Kutta
condition was satisfied after the previous vortex was incorporated into the flow at the
end of the previous time step. The right-hand side of (3.9) is therefore indefinite at
that moment and we need to evaluate the path and velocity of the new vortex more
carefully. The detailed algebra is described in Appendix B.

In the Runge–Kutta numerical scheme, we introduce a new vortex at ζn = 0 at
each time step and apply the similarity equation (B 1) of Appendix B to calculate
its departing velocity. Then, (3.3) and (3.1) are used to update the subsequent vortex
displacements at the intermediate steps of the scheme. A smaller time step is used if
any of the vortices collides with any other or tries to cross the solid boundaries. This
check is important to avoid any numerical singularities when finding the acoustic field
from the vortex motion. This procedure is repeated until the prescribed terminal time.
The computation time for each time step increases as the square of the number of
vortices in the flow field and, in practice, this limits the calculation period. Examples
of calculations of the inner hydraulic field are given in § 4.1.

4. Numerical results
We use the point vortex model to simulate the inner hydraulic flow field and hence

to describe the sources of sound. In § 4.1, we discuss the simulation results of the
inner flow for both forced and unforced jets. The nozzle to plate distance is set at
L = 3.0 and the time step is δt = 0.133. A new vortex is shed at each time step. This
calculated inner flow is subsequently used to find the far-field acoustic signals for the
unforced and forced jets in §§ 4.2 and 4.3 respectively.

4.1. Hydrodynamic flow field

In this section, we briefly describe the hydraulic field of the impinging jet. As seen
in § 3.1, the jet is driven by a point source on the transformation plane. If the jet is
unforced, the strength of the source is a constant which is unity after normalization.
We also consider a harmonically forced jet by specifying the strength of the source to
be 1 + ũ′ cosΩ0t. As an example, the amplitude of the forcing relative to the mean jet
velocity at the exit is ũ′ = 0.014. The frequency is Ω0 = 2.20 which is believed to be
in range of the preferred frequency for the jet excitation (Crow & Champagne 1971).

At the initial stage of the numerical simulation, the jet suddenly starts from rest.
The vortex element shed from the pipe exit at each time step rolls up to form a
starting vortex. The temporal development of the vortex is shown in figure 5(a–d). As
the circulation of the jet increases, the vortex is convected towards the impingement
plate. There are instabilities occurring between the rolled-up part of the vortex and
the straight line vortex element array near the duct exit. This is due to a similar
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Figure 5. The development of the starting vortex: +, vortex elements; ◦, the first vortex element.
——, −−−, and − · −, traces of the vortex elements shed at t = 0, 4.53 and 8.53 respectively.

mechanism to the Kelvin–Helmholtz instability. The growing disturbances as the
elements roll into the vortex destroy the spiral structure of the starting vortex. These
phenomena are also seen in studies of the roll-up of a finite vortex sheet, see Moore
(1974), Baker (1979) and Krasny (1987). The traces of three selected vortex elements
all show the characteristic of cyclic motion around a moving centre. The time scale
of the starting vortex and jet development is of order D/U.

The circulation of the new vortex element shed at each time step is plotted as a
function of time in figure 6. If the jet is unforced, the circulation settles to a constant
with negligible fluctuations after a transient period as shown in figure 6(a). On the
other hand, the forced case, figure 6(b), shows a harmonic variation in circulation
with the same frequency as the forcing. Despite this, the difference between the
characteristics of the starting vortex for the two cases is negligible.

The influence of the starting vortex on the impingement region fades out as it
moves away from this region and an impinging jet emerges after a sufficiently long
time from the start. A typical distribution of vortex elements is shown in figure 7.
The instabilities of the vortex array grow as the vortex elements move downstream
and result in distinguishable small eddies which consist of a group of elements after
a distance of roughly half the jet pipe width downstream of the exit. Though it
is a two-dimensional configuration, this agrees with the axisymmetrical jet results
(Acton 1980). The eddies are significantly increased in size when they are near the
impingement plane and in the wall jet region. The traces of four selected vortex
elements show that their motion is confined in the shear layer of the impinging jet.
Just as they depart from the pipe exit, these elements are initially convected within a
well-defined shear layer. After a convected distance of half the pipe width or so, the
growing instabilities separate the traces. The developing cyclic motion triggered by
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Figure 6. The circulation of the new vortex element as a function of time: (a) unforced case;
(b) forced case.

the instabilities indicates that the elements are incorporated into eddies so that they
not only move with the mean flow, but also rotate in these eddies.

Merging of successive eddies in the impingement region is also found. A sequence
showing the merging process is given in figure 8(a–f). The familiar threading mecha-
nism of vortex arrays is seen in the sequence of figure 8(a–c) where eddy A, referring
to the caption of the figure, changes its direction of motion as it approaches the
plane and its induced velocity accelerates eddy B towards the plane. Then eddy B,
acquiring a faster velocity from its image, catches up and passes A. The two vortices
combine into a co-rotating pair which eventually coalesces and they lose their separate
identities, figure 8(d–f). This is commonly referred to as ‘vortex pairing’. A similar
mechanism also takes place in the wall jet region.

Vortex pairing is associated with subharmonic excitations. This can be demon-
strated by comparing the spectral density functions of the hydraulic fluctuations at
different streamwise observation points. Figure 9 shows the power spectral density
of the time history of stagnation enthalpy at points inside the unforced incident
and wall jet. The definition of the stagnation enthalpy in this point vortex model
is B(x, t) = −∂φ(x, t)/∂t where φ(x, t) is given by the real part of (3.1). Figure 9(a)
basically represents small broadband fluctuations at a point on the pipe exit plane.
The instability mechanism occurring as the vortex elements convect towards the im-
pingement plane significantly amplifies the fluctuations, for example the fluctuations
at the point near to the impingement region, figure 9(b). In this figure, a recognizable
frequency band of noise, which is roughly between 1 and 5, is particularly excited and
characterizes the unsteady flow field. After the impingement, the broadband noise
tends to shift to a lower frequency range, as in figure 9(c). The modes with frequency
around 0.5 after the second subharmonic excitation dominate the fluctuations beyond
some distance away from the impingement, figure 9(d). Self-sustained oscillations for
the unforced jet are not found. This is in contrast to a broad class of shear flows
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Figure 7. The distribution of vortex elements in the impingement region for an unforced jet at
t = 90.93: +, vortex elements. ——, − − −, − · − and . . . . . ., traces of the vortex elements shed at
t = 81.7, 83.1, 84.4 and 85.7 respectively.

impinging upon obstacles with sharp corners, e.g. Crighton (1992) and Rockwell &
Naudascher (1979).

A similar set of the dynamic responses for the forced jet is also plotted in figure 10.
At a point on the pipe exit plane, figure 10(a), the forcing frequency emerges from the
background noise. The forced mode is slightly amplified by the instability mechanism
at the two observation points near and after the impingement region, figure 10(b, c),
while in the latter case, low-frequency fluctuations as well as the first subharmonic of
the forcing are excited. The second subharmonic frequency eventually dominates the
unsteady fluctuations of the wall jet and the forcing frequency is submerged into the
background noise, figure 10(d).

Mean flow properties, such as the mean velocity and fluctuation intensities, are
reviewed in Kuo (1998). He also uses space–time correlations of the hydraulic velocity
fluctuations to estimate the convection speed of the eddies, which is around 0.6 and 0.7
of the jet exit speed. Similarities, such as the eddy speed and the onset of instabilities,
are found between the two-dimensional incident jet and a cylindrical jet, see Acton
(1980). Two additional time steps, δt = 0.1 and 0.2 were also investigated and both are
observed to yield a similar hydraulic flow. Generally speaking, this model is capable
of resolving the inner flow satisfactorily and provides a suitable basis for far-field
sound calculations.

4.2. Unforced jet

In this section, we calculate the acoustic signals at an observation point ro = 3.0.

The jet is unforced. Figure 11(a, b) show the monopole B̃(1)
o and the module of

the quadrupole term B̃(21,2)
o respectively. These terms are related to the flow motion

through functions P(Ω), (2.15), and Q(Ω), (2.13). The contribution of the monopole is
large at the initial stage. After the impingement of the starting vortex, the fluctuations
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Figure 8. Vortex pairing in the impingement region: +, vortex elements; �, eddy A; ◦, eddy B.

are small. Because of the growing instability in the vortex system, the motions of
individual vortices become chaotic. This leads to broadband signals of fluctuations.
Therefore, we concentrate only on the averaged physical quantities of the simulation,
such as the root-mean-square (r.m.s.) values, in the following discussion.

The r.m.s. of the monopole is about 0.0024 in the time interval t = 30 to 140. The
quadrupole, on the other hand, has of r.m.s. intensity of the fluctuations of about
0.28 in the same time interval. By beginning the calculation of these r.m.s. values at
t = 30, the impingement noise of the starting vortex is excluded. The chosen time
interval is valid provided the whole jet flow region remains compact. That is the case
when the elapsed time t� O(D/(MU)). For low jet Mach numbers, this condition is
fulfilled.

In the theoretical derivation, § 2, we find that all the monopole contributions to the
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Figure 9. The power spectrum of the stagnation enthalpy B̃(x, Ω) of the unforced jet against
frequency Ω. (a) x = (3.0, 0), (b) x = (1.0, 0), (c) x = (0.1, 2.2), (d) x = (0.1, 7.0).
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frequency Ω. (a) x = (3.0, 0), (b) x = (1.0, 0), (c) x = (0.1, 2.2), (d) x = (0.1, 7.0).



Acoustics of a compact impinging jet 273

0.1

0.05

0

–0.05

–0.10
0 20 40 60 80 100 120 140

(a)

Bo
(1)˜

2

1

0

–1

–2
0 20 40 60 80 100 120 140

(b)

Bo
(21,2)˜

t

Figure 11. (a) The monopole B̃(1)
o (t, xo). (b) The module of the quadrupole B(21,2)
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for the unforced jet.

sound field are proportional to the first or second time derivative of∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2

∑
i

Γi
d

dτ
Im

{
log

(
ζi(τ) +

1

a

)}
, (4.1)

after restoring the definition of P(Ω) in (2.15) and carrying out its integration over
the point vortices. Γi and ζi(τ) are the circulation and the location of individual vortex
elements. d/dτ denotes the material derivative. The time derivative of the summation
is calculated from the simulation results at successive time steps. Then, the temporal
integral is carried out from the jet start to the retarded time t − ro. The function
Im {log(ζ + 1/a)} is linearly proportional to the stream function of a hypothetical
potential flow with a source at infinity in the duct. Hence, this expression illustrates
the mechanism of sound production: sound is generated when the vortex elements
cross the hypothetical streamlines (Crighton et al. 1992, chap. 12). The additional
integral is to sum the contribution over the third direction for the two-dimensional
configuration.

From this mechanism, we expect a significant contribution when the vortex elements
are near a sharp corner, such as the duct lip in the present case, where the gradient of
the stream function is large in magnitude. This is seen when the jet starts. However,
after the incident jet becomes fully developed, the array of representative vortex
elements near the lip is only subjected to small perturbations induced by the Kelvin–
Helmholtz instabilities (Rosenhead 1932 and Krasny 1987), as seen in figure 7. The
change due to the motion of the existing vortex after each calculation time step
is further compensated by the new vortex introduced into the flow field. Then the
emerging jet no longer plays an active part in the sound generation.

The module of the quadrupole term B(21,2)
o has a similar sound generation mecha-
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nism to that of the monopoles. For the point vortex model, B(21,2)
o is proportional to

the second time derivative of∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2

∑
i

Γi
d

dτ
Im {ζi(τ)}, (4.2)

where Im {ζ} is a hypothetic stream function with a uniform incoming flow as y2 →∞.
Its numerical implementation is similar to that of (4.1).

Since the contribution from individual vortices is weighted linearly by their location
in the transformed plane, it is expected that the sum in the above expression mainly
arises due to elements distant from the lip. In the time sequence in figure 11(b), a
considerable portion of the high-frequency fluctuations first appears near the starting
time. This follows the apparent short-wave instabilities of the starting vortex. As time
proceeds, these high-frequency fluctuations are gradually suppressed. This may result
from the merging process in the distant hydraulic field.

In a real jet, the extended wall jet eventually breaks the compactness assumption,
say when t & O(D/(MU)). The retarded time difference of sound emitted along the
shear layer is then no longer negligible. Considering a single shear layer, Crighton
& Huerre (1990) find that the acoustic field has much more fruitful characteristics
when the envelope of the source is no longer compact. For example, a superdirectivity
character which is not expressible in multipole terms is found if the envelope has the
length scale of 1/M. Using the method of direct numerical simulation, Colonius, Lele
& Moin (1997) point out that the acoustic field predicted by the acoustic analogy
is very sensitive to small changes in the description of the source in a mixing layer.
These details, however, are beyond the scope of the present discussion and we shall
bear in mind that the compact assumption may only be sustained for some finite time.

4.3. Forced jet

We now go on to calculate the sound of a forced jet. The forcing of a small velocity
fluctuation far upstream in the duct is converted into a condition on stagnation
enthalpy by (2.2) and noting that there is no vorticity in the duct. In non-dimensional
form, this is

M
∂

∂xD
B̃D(t, xD)

∣∣∣
xD→0

= − ∂
∂t
ũ′ cos (Ω0t),

where B̃D(t, xD) is given by (2.43) and xD is the duct variable. This leads to the
estimation of the stagnation enthalpy magnitude of the incident sound

MBI ' −ũ′/2.
This is roughly equal to a total stagnation enthalpy fluctuation of amplitude ũ′/M. The
leading scattering term of the forcing, see (2.46), has an estimated root-mean-square
magnitude 〈∣∣∣∣4πM∂B̂I

∂t

∣∣∣∣2〉1/2

' Ω0ũ
′/(π
√
ro). (4.3)

As an illustrative example, the velocity fluctuation is assumed harmonic with
frequency Ω0 = 2.2 and amplitude ũ′ = 0.014. The intensity of the leading scattering,
(4.3), is about 0.0057. Figure 12 shows the numerical results for the monopole terms,

B̃(1)
o , B̃(22)

o and B̃(21,1)
o , of the shear layer sound, (2.42). Harmonic dependence on the

forcing is found in all the representative functions. The r.m.s. intensity of B̃(1)
o between

t = 30 and 140 is 0.0045. This is produced by the excited hydrodynamic fluctuations in
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Figure 13. The module of the quadrupole B̃(21,2)
o (t, xo) at ro = 3.0 for the forced jet. The directivity

factor is suppressed.

the jet shear layer due to the interaction of the Kutta condition and the incident wave.

The r.m.s. intensity of B̃(22)
o and B̃(21,1)

o is 0.0072 and 0.041 respectively. Since these
terms are further multiplied by small functions of jet Mach number, they do not make
a significant contribution to the far-field acoustics. The intensity of the quadrupole
module, figure 13, is about 0.34 and its spectrum remains broadband. This is because
the quadrupole depends on the global motion of vortices in the impingement region
rather than, like the monopoles, on the localized contribution near the duct exit.
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Fixing the time step and the forcing frequency, we investigate the relationship

between the forcing magnitude and the monopole B̃(1)
o as well as the quadrupole

module B̃(21,2)
o . Figure 14(a) shows the monopole B̃(1)

o due to the flow motion and
our checks have shown that it is almost independent of the time step length. The
amplitude is proportional to the forcing. This linear relationship is also found for
the continuous shear layer of a free jet, Howe (1979). This induced fluctuation is
proportional to the product of the forcing amplitude and its frequency. He further
points out that as far as the interaction with the nozzle is concerned, whether the
exterior flow is stable is quite irrelevant. This is because the principal interaction
between the shear layer and the nozzle occurs in a short hydrodynamic length scale.
On the other hand, when the forcing ũ′/Ue < 0.1, the quadrupole module, figure 14(b)
is rather insensitive and remains around 0.3. This may be due to the saturation of the
nonlinear interactions between the disturbances and the impingement.

Referring to the multipole expansion of the far-field acoustics (2.46) together with
(4.3) and the representative terms in figure 14, we find that the scattering term (4.3)
makes the major contribution to the leading monopole when M is small. Within the
current forcing level (ũ′/Ue < 0.16), it is less than 0.06 at the observation point. The
quadrupole intensity is about 0.3M2. In the very low-Mach-number limit, such as a
water jet, the leading monopole can be the dominant source of sound though it is weak.
On the other hand, since the intensity level of the quadrupole has a larger coefficient
and increases more rapidly as the square of the jet Mach number than the weak
leading monopole, the quadrupole term may reach the magnitude of the monopole
at reasonable Mach numbers. For example, we can estimate that, at the maximum
forcing level of this calculation, the quadrupole will have a magnitude as large as the
leading monopole when the jet Mach number is at least (0.06/0.3)1/2 ' 0.45.
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5. Conclusion
The sound generation mechanism of a two-dimensional low-Mach-number imping-

ing jet is considered. The effects of the jet pipe are included. A multipole expression
for both forced and unforced cases is derived by the method of matched asymptotic
expansions. For simplicity, the jet is assumed symmetric with respect to its centreline.
Symmetric perturbations are observed as the primary modes when the jet speed is high
enough to establish a self-sustained feedback loop, e.g. Neuwerth (1974) and Powell
(1988). They are also shown to have a lower frequency band than the intrinsic proper-
ties of the free jet without the impingement plate (Tam & Ahuja 1990, Tam & Norum
1992). Nevertheless, as discussed in § 2.1, it is possible to include the asymmetric modes
of the jet by applying a more sophisticated transformation with some extra algebra.

Matching processes are carried out for higher-order terms to obtain the quadrupole
sound in addition to the leading monopole. Stagnation enthalpy is used as the
independent variable for the acoustic waves and is normalized on the jet exit velocity.
The sound source mechanism is divided into two categories. One is due to the
scattering of the forcing at the nozzle exit and the other is due to the motion of the
vortical shear layer. For the forced jet, the incoming waves propagating down the jet
generate monopole radiation of order M, M logM and M2.

The expression for the acoustics due to the motion of vortical shear layer has

the same form for both forced and unforced cases. The leading term B̃(1)
o of O(M),

(2.42), is a monopole resulting from the interaction between the exterior flow and
the nozzle. This differs from the leading expansion of a free jet from a nozzle which
is a monopole–dipole combination, Howe (1979). This is as expected, because the
monopole source is reinforced by its image in the impingement surface, while the
dipole is cancelled. When the forcing is not zero, the incoming sound not only induces
a scattered field due to the duct exit region but also produces incompressible vortex
waves through the shedding process, as described by the Kutta condition. These
vortices are convected with the shear layer and are sources of sound which contribute
to the far-field acoustics. Without an impingement surface, the resultant sound, as
demonstrated by Howe (1979), is linearly related to the forced vortex shedding and
does not depend critically on the detailed modelling of the shear flow. The accompa-
nying monopoles of O(M2 logM) arise from the two-dimensional configuration.

Compressibility of the primary hydraulic flow induces a monopole, or isotropic
quadrupole, of the second order O(M2). The quadrupole impingement noise is also of
O(M2). It has the familiar directivity pattern, with the minimum pressure fluctuations
at 45◦ to the jet axis. The fixed pattern is imposed by the rigid boundary condition of
the plate and the duct. It has the same order of magnitude as the quadrupole source
of compact vortical flow in an unbounded field (Crow 1970; Möhring 1979), However,
it is not the only source term and is subjected to interference from the other terms due
to the presence of the nozzle pipe. This explains why the directivity pattern of the im-
pingement quadrupole was not verified experimentally for a low-Mach-number jet un-
til more sophisticated correlation techniques were employed (Shen & Meecham 1993).

To give numerical examples of the far-field acoustics, a point vortex model is
applied to simulate the inner flow motion of impinging jets. We only investigate
the symmetrical fluctuations for simplicity. A complex conformal transformation is
applied to map the physical domain onto the upper half of the complex computational
plane. We use the Kutta condition, which requires the finiteness of the velocity at the
nozzle exit, to calculate the strength of the shed vortex at each time step. The position
of the shed vortex is determined by the requirement of a ‘sound-free’ shedding process.
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This is to prevent the generation of spurious sound due to the discretization of a
continuous shear layer.

In the calculation, the monopoles, in both the forced and unforced cases, make a
significant contribution when the jet starts. After the incident jet is fully developed,
they are no longer as active as sources of sound. If the jet is unforced, the monopole
fluctuation is induced from the instabilities of the vortex array. The intensity of

the leading monopole B̃(1)
o in a chosen finite time interval, § 4, is about 0.0024 at the

observation point ro = 3.0. Equation (4.1) implies that the magnitude of the monopoles
is inversely proportional to the square root of distance to the observation point.
Therefore, we have a dimensional pressure fluctuation for large ro, of approximately
p′rms ' 0.0024(3.0/ro)

1/2M3ρc2, where ρ and c are the density and the speed of sound
in the radiation field.

When the jet is forced, the incoming waves from the duct are scattered at the nozzle

exit and this scattering term, (4/π)M∂B̂I/∂t in (2.46), is the major contribution to the
leading monopole. The intensity of this term as a linear function of the prescribed
velocity fluctuation is given by (4.3) which has a range of pressure fluctuation p′rms
from 0 to 0.06(3.0/ro)

1/2M2ρc2 in a dimensional form for ũ′/Ue < 0.16. The incident
waves also induce circulation fluctuations of the vortex array through the Kutta

condition. They generate additional acoustic monopoles in B̃o(t, xo) on the right-hand
side of (2.46) after interacting with the duct pipe. This term, the same as for the
corresponding free jet, is linearly dependent on the forcing level.

The quadrupole term is a Mach-number-order higher than the leading monopole.
However, it has a larger coefficient. Typically, for small forcing levels, ũ′/Ue < 0.1,
the module function B21,2

o is about a constant level 0.3 at the observation point
ro = 3.0. This magnitude, from (4.2), is also inversely proportional to ro and the
quadrupole has a directivity pattern cos 2θ where θ is measured from the plate.
This leads to a dimensional pressure fluctuation p′rms = 0.3(3.0/ro)

1/2M4ρc2 cos 2θ.
For the compact jet, the quadrupole includes the sound sources in the impingement
region as well as the wall jet. The independence from the forcing level is due to
the saturation of the nonlinear vortical motion in these sound source regions. Since
the magnitude of this quadrupole term increases more rapidly with Mach number
than the weak leading monopole, the quadrupole can become a dominant source
of sound at reasonable Mach numbers. At the maximum forcing level investigated,
ũ′/Ue = 0.16, the present calculation extrapolates to show that the quadrupole
sound exceeds that from the leading monopole at Mach numbers above about
0.45.

This work was carried out while one of the author (C.-Y. K.) was in receipt of an
ORS award from the Committee of Vice-Chancellors and Principals.

Appendix A. Inverse Fourier transformation of the multipole expansion

A.1. Inverse of the monopoles of O(M) and O(M2 logM)

The inverse Fourier transformation of the monopole B(1)
o of O(M) is

F−1

{
− iΩ2

π
P(Ω)H(1)

0 (Ωro)

}
= − 1

2π

∫ ∞
−∞

dΩ
iΩ2

π
P(Ω)H(1)

0 (Ωro)e
−iΩt. (A 1)
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Recalling the definition of P(Ω), (2.15), the right-hand side of the above equation can
be rewritten as

− 1

2π

∫ ∞
−∞

dΩ

∫ ∞
−∞

dτ
iΩ2

π
P̃(τ)H(1)

0 (Ωro)e
−iΩ(t−τ),

which is equivalent to

i

2π2

∂2

∂t2

∫ ∞
−∞

dτ P̃(τ)

∫ ∞
−∞

dΩH(1)
0 (Ωro)e

−iΩ(t−τ). (A 2)

Applying H(1)
0 (−Ωro) = −H(2)

0 (Ωro), the inner integral is∫ ∞
−∞

dΩH(1)
0 (Ωro)e

−iΩ(t−τ) =

∫ ∞
0

dΩ(H(1)
0 (Ωro)e

−iΩ(t−τ) −H(2)
0 (Ωro)e

iΩ(t−τ))

= −2i

∫ ∞
0

dΩ(J0(Ωro) sinΩ(t− τ)−Y0(Ωro) cosΩ(t− τ)),
after restoring the definition of the Hankel function in terms of Bessel functions
J0(Ωro) and Y0(Ωro). The last line of the equation is integrable and well tabulated,
see Gradshteyn & Ryzhik (1994), so that we have∫ ∞

−∞
dΩH(1)

0 (Ωro)e
−iΩ(t−τ) = −4i((t− τ)2 − r2

o)
−1/2H(t− τ− ro).

Substituting into (A 2), the inverse of the monopole is

B̃(1)
o (t) =

2

π2

∂2

∂t2

∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2P̃(τ). (A 3)

Following the same procedures we obtain the monopole B(22)
o of O(M2 logM)

B̃(22)
o (t) =

4

π3

∂3

∂t3

∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2P̃(τ). (A 4)

A.2. Inverse of the monopole of O(M2)

The monopole at this order has the complex form

B̃(21,1)
o (t) =F−1{b(21,1)

o H(1)
0 (Ωro)} = B̃

(21,1)
o1 + B̃

(21,1)
o2 + B̃

(21,1)
o3 , (A 5)

where

B̃
(21,1)
o1 =F−1

{
−1

π

(
iΩ2 +

Ω3

π
B
)
P(Ω)H(1)

0 (Ωro)

}
,

B̃
(21,1)
o2 =F−1

{
Ω3

π2
(iπ− 2 logΩ)P(Ω)H(1)

0 (Ωro)

}
,

B̃
(21,1)
o3 = −F−1{iR(Ω)H(1)

0 (Ωro)},
on using b(21,1)

o from (2.39), (2.36) and (2.27).
Evaluating the first term is straightforward and gives

B̃
(21,1)
o1 =

2

π2

∂2

∂t2

(
1 +
B
π

∂

∂t

)∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2P̃(τ). (A 6)
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To calculate B̃(21,1)
o2 , we need to go through some details:

B̃
(21,1)
o2 = − 1

2iπ3

∂3

∂t3

∫ ∞
−∞

dτ P̃(τ)

∫ ∞
−∞

dΩ (2 logΩ − iπ)H(1)
0 (Ωro)e

−iΩ(t−τ)

= − 1

π3

∂3

∂t3

∫ ∞
−∞

dτ P̃(τ)Im

{∫ ∞
0

dΩ (2 logΩ − iπ)H(1)
0 (Ωro)e

−iΩ(t−τ)
}
, (A 7)

where we use log(−Ω) = log(Ω) + iπ. The last integral has no exact closed form, but
we can find an approximation for ro large:

H(1)
0 (Ωro) ∼

√
2

πΩro
exp

(
iΩro − iπ

4

)
.

After substitution into (A 7), the inner integral can be carried out while the singularity
at Ω = 0 is integrable and has negligible contribution. The approximate result is

B̃
(21,1)
o2 ∼ 2

π3

√
2

ro

∂3

∂t3

∫ t−ro

−∞
dτ P̃(τ)

(ψ(1/2)− log(t− τ− ro))
(t− τ− ro)1/2

, (A 8)

where ψ(x) is Euler’s psi function which has value −1.96351 at x = 1/2.
Before evaluating the third monopole, recall the definition (2.38)

R(Ω) =F
{∫ (

D2

Dt2
B̃

(0)
i − Du

Dt
· ∂u
∂t

)
dVy

}
. (A 9)

Restoring the momentum equation and expanding the material time derivative, we
have

D2

Dt2
B̃

(0)
i +

Du

Dt
· ∂u
∂t

= ∇i p
ρ
· ∂u
∂t

+

(
∂2

∂t2
+
∂

∂t
u · ∇i + u · ∇i ∂

∂t
+ u · ∇i(u · ∇i)

)
B̃

(0)
i .

Noting that ∇i · u = 0 with only higher-order error, we can re-express the right-hand
side of the above equation as

∂2

∂t2
B̃

(0)
i + ∇i ·

{
p

ρ

∂u

∂t
+

(
∂

∂t
u+ u

∂

∂t
+ u(u · ∇i)

)}
B̃

(0)
i . (A 10)

Integrating this expression over the control volume and substituting back into (A 9),
we have

F−1{R(Ω)} =

∫
∂2

∂t2
B̃

(0)
i dVy

+

∮
dSy n ·

{
p

ρ

∂u

∂t
+ (

∂

∂t
u+ u

∂

∂t
+ u(u · ∇i))B̃(0)

i

}
, (A 11)

where n is the unit vector normally outward from the boundary. The second term
involves integration over the physical boundaries and a control surface at infinity.
The integral over the solid boundaries vanishes because the normal velocity there is
zero. Since we use discrete point vortex model to simulate the impinging jet, we have
the velocity potential from (3.1). This gives a far-field velocity u which decays as 1/ri,

and the pressure p and B(0)
i decay as 1/r2

i . Integration over the distant control surface
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therefore vanishes as well. Furthermore, at infinity in the duct, the flow is steady and
∂B

(0)
i /∂xi = 0. The only non-zero term of (A 11) is therefore

F−1{R(Ω)} =

∫
∂2

∂t2
B̃

(0)
i dVy − ∂

∂t
B̃

(0)
i

∣∣∣∣
ζy→−1/a

, (A 12)

after integrating over the cross-section at infinity in the duct. The second term on the

right-hand side B̃(0)
i |ζy→−1/a is F−1{iΩP(Ω)/π}, from (2.14).

The volume integral of (A 12) is fully expanded using (2.8)∫
∂2

∂t2
B̃

(0)
i dVy =

∂2

∂t2

∫∫
dVy dVx (ω × u) · ∇ixG(yi, xi),

which, using momentum equation, is equivalent to

− ∂
2

∂t2

∫∫
dVy dVx

(
∂u

∂t
+ ∇x

(
u2

2
+
p

ρ

))
· ∇ixG(yi, xi).

In the present model, there is a velocity potential φ such that u = ∇xφ. Hence the
above integral is

− ∂
2

∂t2

∫∫
dVy dVx ∇x

(
∂φ

∂t
+
u2

2
+
p

ρ

)
· ∇ixG(yi, xi),

which is zero because ∂φ/∂t + u2/2 + p/ρ is Bernoulli’s constant for incompressible
flow. Therefore, we have R(Ω) = −Ω2P(Ω)/π and

B̃
(21,1)
o3 = − 2

π2

∂2

∂t2

∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2P̃(τ). (A 13)

Summing over (A 6), (A 8) and (A 13), we have the monopole of O(M2)

B̃(21,1)
o =

2

π3

∂3

∂t3

{
B
∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2P̃(τ)

+

√
2

ro

∫ t−ro

−∞
dτ P̃(τ)

(ψ(1/2)− log(t− τ− ro))
(t− τ− ro)1/2

}
, (A 14)

where ψ(1/2) = −1.96351 and B = a− log 2− 2 log (π/a) + 2γE .

A.3. Inverse of the quadrupole

The inverse of the quadrupole B(21,2)
o is

F−1

{
πΩ3

4
Q(Ω)H(1)

2 (Ωro)

}
=

1

2π

∫ ∞
−∞

dΩ
πΩ3

4
Q(Ω)H(1)

2 (Ωro)e
−iΩt, (A 15)

where the directivity factor has been suppressed for brevity. The Hankel function of
second order is replaced by

H(1)
2 (Ωro) = − 2

Ωr2
o

d

dΩ
H(1)

0 (Ωro)−H(1)
0 (Ωro).

Substituting into (A 15), we have the right-hand side of the equation

−1

8

∫ ∞
−∞

dΩ Q(Ω)e−iΩt

(
2Ω2

r2
o

d

dΩ
H(1)

0 (Ωro) + Ω3H(1)
0 (Ωro)

)
.
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The first term decays much faster than the second. Hence, it is negligible if the
observer is far away from the source region. The other term can be evaluated in a
straightforward way and leads to

B(21,2)
o =

1

2

∂3

∂t3

∫ t−ro

−∞
dτ ((t− τ)2 − r2

o)
−1/2Q̃(τ). (A 16)

Appendix B. Similarity solution for the departing new vortex
We have seen in § 3.2 that the equation of motion for the new vortex encounters

an indefinite value just as it departs from the exit at the beginning of the time step.
This is because Φ′(0) is zero at this moment. To remove this singularity, we assume
that initially it moves along a straight path and that its location can be written as

ζn = σtαeiθ, (B 1)

where σ, θ, and α are constants; t is measured relative to the beginning time of the
step. In addition, Φ′(0) is presumed proportional to t, say

Φ′(0) ' λt, (B 2)

due to the motion of the remaining vortices.
For the departing vortex, ζn → 0, equation (3.9) leads to

ασ2t2α−1(3e2iθ − 1) =
4π

Da2
(1 + 1/a)1/2 lim

ζn→0
u(zn)− σ2t2α−1(e2iθ − 1) (B 3)

after substitution of (B 1) and (B 2). Bringing dζn/dzn and d2ζn/dz
2
n from (2.10) into

(3.3) and noting that the Kutta condition is satisfied, we find that the the finite velocity
of the new vortex is

lim
ζn→0

u(zn) = −
√

1 + 1/a

Da2

{
UeDa

2 −∑
j

iΓj

(
1

ζ2
j

− 1

ζ∗2j

)

+
iΓn
ζn

[(
1

ζn
− 1

ζ∗n

)
− 1

ζn − ζ∗n −
1

2ζn

]
+ O(ζn)

}
. (B 4)

Recalling the Kutta condition (3.5) which gives the circulation Γn as a function of the
vortex position, we have Γn proportional to tα+1 after incorporating (B 2). Therefore,
the terms in the second line of (B 4) are proportional to t1−α and tα while those in the
first line have a non-zero constant leading term.

We can then determine α by balancing the power of t of the leading terms in
(B 3). This gives the only possible value of α to be 1/2. Neglecting the small terms
proportional to t1−α on the right-hand side of (B 4), limζn→0 u(zn) is a real function.
Therefore, we have that θ = π/2 from (B 3). This shows that the new vortex leaves
the exit tangentially to the pipe. Finally, we obtain the solution for σ

σ2 =
π

D2a4

(
1 +

1

a

){
UeDa

2 −∑
j

iΓj

(
1

ζ2
j

− 1

ζ∗2j

)}
, (B 5)

after putting α, θ and (B 4) into (B 3).
The indefinite value at the start of the time step is therefore removed. The constants

α, θ and σ are substituted into (B 1) and give the first extrapolated location of the
new vortex after a time step at t = δt.



Acoustics of a compact impinging jet 283

REFERENCES

Acton, E. 1980 A modelling of large eddies in an axisymmetric jet. J. Fluid Mech. 98, 1–31.

Baker, G. R. 1979 The ‘cloud in cell’ technique applied to the roll up of vortex sheets. J. Comput.
Phys. 31, 76–95.

Brown, C. E. & Michael, W. H. 1954 Effect of leading edge separation on the lift of a delta wing.
J. Aero. Sci. 21, 690–706.

Colonius, T., Lele, S. K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330,
375–409.

Crighton, D. G. 1992 The jet edge–tone feedback cycle; linear theory for the operating stages. J.
Fluid Mech. 234, 361–391.

Crighton, D. G., Dowling, A. P., Ffowcs Williams, J. E., Heckl, M. & Leppington, F. G. 1992
Modern Methods in Analytical Acoustics. Chapter 13, Springer.

Crighton, D. G. & Huerre, P. 1990 Shear layer pressure fluctuations and superdirectivity acoustic
sources. J. Fluid Mech. 220, 355–368.

Crow, S. C. 1970 Aerodynamic sound emission as a singular perturbation problem. J. Acoust. Soc.
Am. 34, 902–906.

Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48,
547–591.

Disselhorst, J. H. M. & Wijngaarden, L. van 1980 Flow in the exit of open pipes during acoustic
resonance. J. Fluid Mech. 99, 293–319.

Gradshteyn, I. S. & Ryzhik, I. M. 1994 Table of Integrals, Series, and Products, Academic.

Hildebrand, F. B. 1956 Introduction to Numerical Analysis. McGraw–Hill.

Ho, C. M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon.
J. Fluid Mech. 105, 119–142.

Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet
noise and the theory of the flute. J. Fluid Mech. 71, 625–673.

Howe, M. S. 1979 Attenuation of sound in low Mach number nozzle flow. J. Fluid Mech. 91,
209–229.

Howe, M. S. 1996 Emendation of the Brown & Michel equation, with application to sound
generation by vortex motion near a half-plane. J. Fluid Mech. 329, 89–101.

Knio, O. M., Collorec, L. & Juve, D. 1995 Numerical study of sound emission by 2d regular and
chaotic vortex configurations. J. Comput. Phys. 116, 226–246.

Kober, H. 1952 Dictionary of Conformal Representations. Dover.

Krasny, R. 1987 Computation of vortex sheet roll–up in the trefftz plane. J. Fluid Mech. 184,
123–155.

Kuo, C. Y. 1998 The acoustics of impinging jets. PhD thesis, University of Cambridge.
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